Expert Tips and Hints

4x4 Vehicle Design Process
4x4 Off Road Vehicle

How & Why did they end up with this design?

Why this bumper shape?

Why these tyres?

What do all these bits do?

Why this design / type?

Land Rover Discovery II – Front Beam Axle suspension during articulation

What’s this?!
Who or What is a Designer?

“A person who imagines how something could be made and draws plans for it”

(Cambridge On-line Dictionary)

4x4 in Schools Technology Challenge?

To design and build a 4x4 vehicle that will negotiate a series of obstacles and tests

So, Design in this case will be:

The process of **imagining** and **creating solutions** which enable our 4x4 vehicle to successfully travel over the differing conditions of the test track.
• Define the Problem!
 > What is it we are trying to solve?

• What are our objectives?
 > What must our design do?
 > What would we like it to do?
 > If we are successful, what will we have achieved?
Some examples of requirements which need to be considered for designing a 4x4 vehicle...
Basic geometry affects ability to negotiate obstacles

Approach angle

Ramp-over angle

Departure angle

Ground Clearance
These are just some of the requirements a real 4x4 vehicle must have to enable it to the job required.

Ask yourself:

• Which of these does your 4x4 vehicle need to do?
• Anything your 4x4 model needs to do that a real 4x4 vehicle doesn’t?
• Just as importantly, what does your 4x4 model NOT need to do?

Identifying this correctly could enable you to simplify the design...
• New & Old ideas!
• How do other people do it?
• Could we adapt a solution from a different industry / area?
• Individual ideas to whole concepts

“Brainstorming”:
> Each Team Member individually think of as many ideas as possible, then
> As a team, collate ideas, discuss, develop = any more new ideas / developments?

Design Process

Problem Definition

Ideas Creation

Concept Generation

Concept Selection

Development

Manufacture

Test

The Finished Solution!
some examples of things that “Off Road”...
(thought provokers)
What other sources for ideas are there?

- Consider:
 - How do they steer?
 - What suspension system do they use? (Does it even have any suspension – if not, how does it cope with rough terrain?)
 - How do they drive the “wheels”?
 - What sort of terrain can they cross, and how? What design features make this possible?
 - How are they manufactured? Could it be made in a different way / material / more simply?

- How could these ideas or principles be used for your model?
- Can you adapt or evolve any of the ideas to suit your purpose?
Capture / Explain ideas in more detail... (drawings, sketches, explanations)

IDEA: vehicle layout
Team Member: Fred
Sketch or Pictures:
Description & advantages:
Package heavy items similar to layout above – saves space and also reduces centre of gravity for better vehicle stability on slopes.

IDEA: concept XP7a
Team Member: John
Sketch or Pictures:
Description & advantages:
Concept encompasses a common theme of basic, simple ideas throughout to aid easier design and manufacture, as shown above.

IDEA: steering idea
Team Member: Kay
Sketch or Pictures:
Description & advantages:
Works like a Defender 4x4, but instead of steering about axis (X) it rotates about point (Y) and uses links (L) to attach to the frame (F) as doesn’t need to perform like a real car at high speed function. Should therefore be easier to design than conventional system.

Brainstorming Sheet
Team Member: Kay
Suspension system from a Dodgy Motors Dingo
Magnesium drive system & steering
Martian Tripod
Elliptical shaped bearings
Electric toothbrush
British Telecom Tower – window design
Tyres from a Turbo Yoki 4x4 vehicle
Simple steering system from a Frogmaster IV
Aeroplane landing gear
Sydney Harbour Bridge pivots
Telephone receiver design
Hewlett Packard XP7a concept vehicle
Infinite improbability drive
Ford Fiesta wiper mechanism – use as adjuster
Potato peeler handle
Sticky backed plastic – use as main construction material

Brainstorming Sheet
Team Member: John
Suspension system from a Dodgy Motors Dingo
Magnesium drive system & steering
Martian Tripod
Elliptical shaped bearings
Electric toothbrush
British Telecom Tower – window design
Tyres from a Turbo Yoki 4x4 vehicle
Simple steering system from a Frogmaster IV
Aeroplane landing gear
Sydney Harbour Bridge pivots
Telephone receiver design
Hewlett Packard XP7a concept vehicle
Infinite improbability drive
Ford Fiesta wiper mechanism – use as adjuster
Potato peeler handle
Sticky backed plastic – use as main construction material

Brainstorming Sheet
Team Member: Fred
Suspension system from a Dodgy Motors Dingo
Magnesium drive system & steering
Martian Tripod
Elliptical shaped bearings
Electric toothbrush
British Telecom Tower – window design
Tyres from a Hewlett Packard XP7a
Simple steering system for a Dodgy Motors Dingo
Aeroplane landing gear
Sydney Harbour Bridge pivots
Telephone receiver design
Hewlett Packard XP7a concept vehicle
Infinite improbability drive
Ford Fiesta wiper mechanism – use as adjuster
Potato peeler handle
Sticky backed plastic – use as main construction material
Problem Definition

Ideas Creation

Concept Generation

Concept Selection

Development

Manufacture

Test

The Finished Solution!

• Sort the ideas into groups, e.g.
 > not-suitable; suitable; very suitable
 > easy; moderate; difficult (technology)

• Generate 2 to 4 differing Concepts incorporating one or more of the “best ideas” which you think would deliver a good chance of meeting your objectives

 > Could try a scoring system to aid selection / rank ideas

• Remember, K.I.S.S.! Simple ideas are more likely to work and will be easier to deliver – unnecessary complication does not make a design better
Ideas Grouping

<table>
<thead>
<tr>
<th>Very Suitable</th>
<th>Maybe</th>
<th>Not Suitable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle B</td>
<td>Vehicle T</td>
<td>Vehicle A</td>
</tr>
<tr>
<td>Vehicle C suspension principle</td>
<td>Suspension Y</td>
<td>Using a zzzzzzzz as a spring</td>
</tr>
<tr>
<td>Tyres from vehicle G</td>
<td>Driveline from vehicle G</td>
<td>Suspension Q</td>
</tr>
<tr>
<td>Suspension type F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension D with John’s spring idea</td>
<td>John’s idea for steering</td>
<td>Steering concept 4</td>
</tr>
<tr>
<td>Kay’s idea for steering</td>
<td>Use a yyyyyy as a spring</td>
<td>Manual adjuster widget</td>
</tr>
<tr>
<td>Using electric toothbrush motor to drive adjuster widget</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difficult</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use a xxxxxxx as a spring</td>
<td>Using motor from vacuum cleaner to drive the adjuster widget</td>
<td>Vehicle L</td>
</tr>
<tr>
<td>Fred’s vehicle concept idea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension Z</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Concept 1:
Based on Vehicle B but with suspension Z at rear; tyres from vehicle G. Base assumption conventional spring, but investigate using xxxxxx spring as alternative.

Concept 2:
Based around Kay’s steering idea with suspension F, but may rely on driveline from vehicle G – needs further development to decide

Concept 3:
Fred’s vehicle concept + suspension F

Concept 4:
Vehicle T but using suspension D with John’s idea to see if it solves main issue
• Important to record why you grouped the concepts the way you did:
 • What was it about the idea that made it a good one?
 • What was it about the idea that made it unsuitable, e.g.:
 • didn’t meet the Challenge Constraints (e.g. tracked vehicle – not allowed)
 • design not expected to perform as required, i.e. doesn’t meet objectives

• Will more than likely come back several times to re-address / re-evaluate the decisions you make – documenting makes this easier!

• Refer frequently back to your objectives to maintain a focus on what it is you’re trying to achieve...
Problem Definition

Ideas Creation

Concept Generation

Concept Selection

Development

Manufacture

Test

The Finished Solution!

- Consider each of the 2 to 4 Concepts in more detail:
 > How well do we think it might perform?
 > How might we make it?
 > Do we think it would be robust?
 > How well do we think it would satisfy our “must do / objectives” list?
 > What’s special about this Concept?

This will require some limited design work for each Concept, and maybe some simple test models (prototypes) to prove out each Concept’s design fundamentals.

- Decide on the best Concept to take forward to the next stage and develop in detail
<table>
<thead>
<tr>
<th>Subjective Ratings</th>
<th>Concept 1</th>
<th>Concept 2</th>
<th>Concept 3</th>
<th>Concept 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must Do 1</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Must Do 2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Must Do 3</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Must Do 4</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Objective 1</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Objective 2</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Objective 3</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Objective 4</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Manufacture</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Score</td>
<td>fail</td>
<td>380</td>
<td>309</td>
<td>372</td>
</tr>
</tbody>
</table>

Can the concept be changed to make it work?

- Could set a minimum score remit for any "must do", i.e. < 5 = automatic fail
- Same for "manufacture"? The best design is no good if you can't make it!
- Numbers in brackets are weighting factors for more important requirements (score multipliers)

5x10 + 6x8 + 6x5 + 6x5 + 10x8 + 1x7 + 5x5 + 10x10 = 380

8x10 + 6x8 + 9x5 + 1x5 + 4x8 + 2x7 + 1x5 + 8x10 = 309

6x10 + 8x8 + 5x5 + 8x5 + 8x8 + 7x7 + 4x5 + 5x10 = 372
Note how Concepts 2 and 4 have very similar overall scores. However,
 - Concept 2 is easier to make (high manufacturing score), but
 - Concept 4 achieves its objectives better, especially in the “must do” categories...

Which one should you choose? A real world dilemma!
"The Design Funnel" analogy

The "Design Funnel" starts with many ideas containing little detail, progressively filtering them down to a few of the best concepts in much greater detail.

1. Problem Definition
2. Ideas Creation
3. Concept Generation
4. Concept Selection
5. Development
 - Manufacture
 - Test
6. The Finished Solution!
Problem Definition
Ideas Creation
Concept Generation
Concept Selection
Development
Manufacture
Test
The Finished Solution!

- Detail design, actual sizes and construction determined
- Can start to calculate actual performance – will the concept perform as expected?
- Need to balance:
 Evolve the design; don’t throw away a good idea until we are sure it won’t work! Important to maintain resolve to try and solve issues to deliver the concept
 With:
 Now we know better any limitations of our concept, are there alternate ideas from the other concepts that could enhance this design or provide a better solution?
- How good was our Concept Selection phase? Do we need to re-consider?

Feedback
Problem Definition
Ideas Creation
Concept Generation
Concept Selection
Development
Manufacture
Test
The Finished Solution!

• Build the concept!
• Are there any changes to the design required in order to build the vehicle?
 > How well did we consider the manufacturing requirements during the design phases?
• Consider how different construction methods will affect the ability to carry out repairs or design updates
• What tests should we conduct on the concept?
 > Are they representative / sufficient?

• Does the Concept perform as required?

• What failures do we see?
 > Could we have predicted them?
 > How should we modify the design to stop the failures re-occurring?
 > Note that ‘failures’ refers to ‘failure to meet objectives’ as well as ‘broken’!

• Does the testing show we could modify the design to enhance its performance further?
Some examples of real Land Rover tests

- Side slope test (35 deg)
- New Discovery testing traction on muddy slope at Eastnor Off Road Centre
- Gulley / ditch test
- Articulation ramp
 (How high can one wheel get with the other 3 still in contact with the floor?)
- Articulated traction test
 (2 wheels just contacting floor – can the vehicle drive forward?)

Hydraulic rig test (durability)
Problem Definition

Ideas Creation

Concept Generation

Concept Selection

Development

Manufacture

Test

The Finished Solution!

• How did we do?
 > Did we meet all our objectives?
 > What compromises did we need to make to the original concept in order to deliver a finished working product?

• Most importantly, what did we learn? How would we do it better next time?
Land Rover Discovery 3

From initial Design sketch, through...

Problem Definition
→ Ideas Creation
→ Concept Generation
→ Concept Selection
→ Development
→ Manufacture
→ Test
→ The Finished Solution!

...Design Process, to...

Land Rover Discovery 3
A real car takes a team of around 300 or more people over 3 years to develop. **You don’t have that long or that many people!**

- Keep it simple
- The best ideas are usually developments of existing ideas or technology applied in new or innovative ways...

There is rarely such a thing as ‘right’ or ‘wrong’ in design, only decision making helped by experience and previous learning

- Document your decisions so you can re-evaluate when required

It is virtually impossible to develop a concept to a working design **without making some compromises**, but the best designs will have decided what can be compromised and what can’t!

- Set your objectives at the beginning
- Be realistic but challenging

Don’t be afraid to voice an idea, and never stifle other people’s creativity

- The thought of Man flying only a hundred years ago was considered preposterous...!
- You never know, it might just work!!
- **Approach Angle** – The angle between an imaginary line drawn tangential from the front tyre to the bodywork and the ground. A good approach angle generally means large obstacles or steep hills can be approached without damaging the body. See slide 9.

- **Departure Angle** – The angle between an imaginary line drawn tangential from the rear tyre to the bodywork and the ground. A good departure angle generally means the vehicle’s tail avoids contacting the ground and possibly damaging the body as the vehicle starts to climb a steep hill or obstacle. See slide 9.

- **Ramp-over Angle** – The angle between imaginary lines drawn tangential from the front and rear tyres to a midpoint between the wheels on the underside of the vehicle and the ground. A good ramp-over angle generally means the vehicle’s underside avoids contacting the ground as it passes over the apex of a steep hill / obstacle. See slide 9.

- **Axle** – refers to a pair of wheels, either at the front or at the rear of the vehicle. In the past usually referred to a driven beam axle, but now can also be used to describe a pair of wheels with independent suspension.

- **Beam Axle** – A driven axle where both wheels are joined by a solid beam between them. See slide 3.

- **Axle Articulation** – On an axle, the total displacement (distance moved) when the suspension on one side is fully compressed and the other side is fully extended. Increased axle articulation generally means the vehicle’s suspension can cope with larger obstacles. See slide 3.

- **Suspension** – A system whose primary function is to keep the vehicle’s wheels (or other device) in contact with the ground under varying conditions. Its secondary function is to isolate ground inputs (e.g. bumps) from the vehicle to provide a smoother, more comfortable ride.

- **Independent Suspension** – A system where the suspension on each side can operate independently from the other, unlike a beam axle suspension where a wheel input on one side also affects the wheel on the opposite side of the axle.

- **Traction** – the ability to transfer the rotation force (torque) on a wheel (for example) into a movement of the vehicle. Relies on a contact friction (grip) between the wheel and the ground. No grip = no traction!

- **Differential** – A geared device which enables driven wheels to rotate at different speeds whilst transmitting torque. Required because as a typical vehicle turns a corner, each wheel takes a different radius around the bend and therefore travels at a different speed. Many 4x4’s have 3 differentials (front, rear, centre) some of which can be ‘locked’ at low speeds on slippery surfaces to prevent wheel spin and possible loss of traction.